Supplementary Materials

A Proof of Theorem 1

A.1 Key Properties

We provide a number of concentration properties under non-uniform sampling. These properties are in parallel
to those under uniform sampling used in [1, 3, 12]. More specifically, Lemma 1 is proven in [9], which readily
implies Lemma 3. We develop the proofs for other lemmas based on local incoherence, and provide the detailed
proofs in Appendix B.

Lemma 1. [9, Lemma 9] Suppose P((i,5) € Qo) = qi; for alli,j € [n]. If gij > Co(poi;7logn)/n for
some sufficiently large constant Co and for all i, j € [n], then with high probability

1
|Pr — PrRo,Pr|| < 3 (17)
Lemma 2. If |Pr — PrRa,Pr| < & and pi; > po forall i, j € [n], then

(@) [PrRa, || < /5057

(b) Pa,Pr is injective on T.

Lemma 3. Suppose P((i,5) € Qo) = qij for all i,j € [n]. For a fixed matrix Z € T, if ¢ij >
Co(pizjrlogn)/n for some sufficiently large constant Co and for all i, j € [n], then with high probability

1
1Z = PrRao (2)llr < 511Z][F. (18)

Lemma 4. Suppose P((i,7) € Qo) = qi; foralli,j € [n]. For a fixed matrix Z € T, if qi;; > Cor/pijr/n
for some sufficiently large constant Co and for all i, j € [n], then with high probability

C
[(Ray = DZI < 212w (19)
0

for some constant C.

Lemma 5. Suppose P((i,7) € Qo) = qi; for all i,j € [n]. Suppose B > 0 is a scaling factor. For a fixed
matrix Z € T, if qi;j > CoB~2\/ijr/n for some sufficiently large Co and for all i, j € [n], then with high
probability

1
(PR — Pr)Zlw(ee) < EBHZHU)(OO)' (20)

Lemma 6. Suppose S is the error matrix in the random sign model defined in Section 2.1. Then for any given
index (a,b) with a, b € [n], with high probability

|[Prsgn(S)],,| < C./““brnﬂ Q1)

A.2 Proof of Proposition 1 (Dual Certificate Conditions)

for some constant C.

Due to the assumption of the proposition, I' = Q¢ satisfies the conditions required in Lemma 1. Hence, due
to Lemmas 1 and 2, we have ||[PrRr| < \/% with po = 1/n® and PrPr is injective on T with high
probability.
Suppose L=L+HadS=S-H satisfy

L+ HIl« + S = H[x < [[Lll« + Al[S]]- (22)
By the definition of subgradient, we have

IL+ H|« > ||L|l« + (PrH,UV*) + |Ppo H]| .

where we use the fact that there exists W € T and |W|| < 1 such that |Pp. H||. = (Ppo H, W).
Thus, we have

(PrH,UV") + [PrsHll. < XS]l = AllS = Hllx.

10



Furthermore,
1S = Hlly = [|S = PaH|1 + [[PrH|x
> [[S[l + (sgn(S), —H) + [PrH|J1.
Combining the last two inequalities, we have
[PrsHll« + A[PrHll < (H, Asgn(S) = UV™).
For a matrix Y that obeys the conditions in the Proposition 1, we derive
(H, Asgn(S) —UV™)
=(H,Y + Asgn(S) —UV") — (H,Y)
= (PrH,Pr(Y + Asgn(S) —UV™)) + (PrL H,Pr1 (Y + Asgn(S)))
—(PrH,PrY) — (PoH,PaY)
A 1 A
< SIPrH|e + {IPrs Hll. + 3 IPeHIL.
Combining the previous two inequalities, we obtain

3 3 A
2 R <= .
SIPr Hll + SNPRHL < S [P

We next bound ||Pr H || as follows:

|PrH|r <2||PrRePr(H)|r
< 2[|PrRePro (H)|lF + 2[PrRr(H)| p

< \/EHPTL(H)HF + \/gHPr(H)HF-
(% - %\/@ 1Py ()| + GA - %\/g) 1Pe(H) | F < 0.

The above inequality implies that if po > 1/n?, then Pr. H = PrH = 0. This further implies PrPr(H) =
0. Since PrPr is injective on T', we have Pr H = 0. Consequently, H = 0.

We thus obtain

A.3 Dual Certificate Verification

We show that the dual certificate constructed in (13)-(15) satisfies the conditions in Proposition 1.

We first bound || Zo|| F, || Zo /o and || Zo||w(o0). Observe that for an index pair (a, b), we have
[Zolav] < |[UV™]as| + Al[Pr sgn(S)]as|-

Using the fact that |[[UV*]ap| < 4/ #28” and A = m, and applying Lemma 6, we obtain

1Zolloe < C\/pir/n. (23)
Furthermore,
1Zollr < UV™|lr + Al[Prsgn(S)llr < Vr+Cypur < C'pr 24)
where we used || Z]|r < n||Z|| for any matrix Z, and
[ Zollw(o) S NUV [lu(oe) + AlIPr sgn(S) [luwoe)
|[Pr sgn(S)]as|

<1+ max\
a,b Wab
<, (25)
where we used the definition wa, = max{y/pas7/n?, €} and X = ﬁ. We note that for the sake of

convenience, the constants C' and C’ may be different from line to line.

We further note that Lemma 3 implies

1
1Zellr < §||Zk—1HF (26)
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with high probability, provided that ¢;; > Co(us;7 logn)/n for some sufficiently large constant Cy and for all
i,7 € [n].

Lemma 4 implies
C
I = Re) Ziall < Gl Zelluceo @7

with high probability, provided that g;; > Co+/pijr/n for some sufficiently large constant Cy and for all
i,j € [n].

Lemma 5 implies

1
Z1 ||wioso) < ———=|20||w(s0 28
1Z1]atoe) < 5l Zollucee (28)
and
1
||ZkHw(oo) S §‘|Zk71||w(oo) for k = 2,-~~ ,l (29)

with high probability, provided that ¢;; > Co+/pi;7/n for some sufficiently large constant Cp and for all
i,j € [n].

We are now ready to show that the constructed dual certificate Y obeys the conditions (9)-(12) in Proposition
1. Clearly, Y satisfies PoY = 0 given in (9) due to the construction.

In order to show that Y satisfies (12), we derive
HPTY + PT()\ sgn(S) — UV*)HF

1
=||Zo — (ZPTRFka1>

k=1

F

l
= ||(Pr — PrRr,)Zo — <Z PrRr, Zkl)

k=2

F

1
= (|PrZ1 — (ZPTRFka1>

k=1

F

@ 71\ ® 71\
=lzlr < 5 NZollr < C 3 NS

where (a) follows from (26) and (b) follows from (24).

A

n?’

In order to show that Y satisfies (11), we respectively show that | P, Y| < £ and [|Pr. (Asgn(9))|| < ¢ as
follows.

l
[ProYll = |[Pre Y Ry Zr

k=1

l
< D IPriRe, Zi|

k=1

l
O NP (Rey Zis — Zi)|
k=1
!
< |Rry Zi—1 — Zi—1]]

| Z—1 | w(o0)

<
Co

© C Lo /!
< 2 (1 - Zollw(oo
a1+ = (5) )1l




where (a) follows because Zx_1 € T, (b) follows from (27), (c) follows from (28) and (29), and (d) follows
from (25) and C) is sufficiently large.

Furthermore, by applying the spectral norm bound on random matrix in [19], we have

1Pro (Asgn(8))[| < Allsgn(S)]| < A~ 4v/n. 30)
Since A = W, we have
1 1
Pro(A N < —— < =
IPrsgn(S)I < g < g
In order to show that Y satisfies (10), we derive
l
1Yl = |32 Rey Zios
k=1 o
(a) 6 l
< Z ij H{(Z,J)€F1}(ZO 1]61 Z H{(ZJ)EFk}(Zk 1)13616
4,7 P _
1
< 6~magxw +Zmaxw

pij oy G

!
6 1
< ——— 11 Z0 (oo || Zk—1||w(oo
< Govntognll 2ol + 2 g7l Zuilluco

6 e+ 2 ()2
>~ C’o\/ﬁlogn 0 flw(oo) — C() nlogn ) 0 f|w(oco)

7

< ———rn— || Z0 (oo

< Gomim | Zollec

(c)

< 224C

=G

(d)

2

— 4
where (a) is due to the golfing scheme with non-uniform partitions, (b) follows from (28) and (29), (c) follows
from (25) and (d) follows because CY is sufficiently large.

A

B Proofs of Key Properties

In this section, we prove the key lemmas provided in Appendix A.1. The central technique used here is non-
communicative Bernstein inequality [20].

B.1 Proof of Lemma 2
We note that the condition |Pr — PrRa,Pr|| < % implies for any matrix Z
1 3
SIIPrZlr < [PrRaoPr(Z)llF < SlIPrZ|F.
Thus, for any matrix Z, we have
1/2 2 RL/2 RL/2
|[REPr(2)| | = (R Pr(2), RYPr(2))

= (Z, (R Pr) R Pr(Z))
= (Pr(2),PrRo,Pr(Z))
IPrZ|| p[|PrRayPr(Z)||F

IN

| /\

*HPTZH%-

Thus, 1/02797" and PT’R;]/O % are adjoint op-

I/UQPTH < 4/3/2 and hence HPTR1/2

erators and have equal norm. On the other hand, we show HR;{O 2” < 1/4/po as follows. For any matrix
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2
2 1
Rl/zZH = IS Ly yean Zijeie!
H a0 ()|, ZJ o e Zigeic; )
Z5 1
< Yo< | Z|%.
—Em—m““
»J

Thus, [|Re, Prl < RGN - IRG, Prll < - Thus, [|PrRa, || < /5%

Since we have —||PTZHF < PrReyPr(2)|r < 3||PrZ||r for any matrix Z € T, the operator
PrRa,Pr mapping T onto itself is well conditioned. Thus, Pq,Pr is injective on T, i.e., for Z € T,
PooPr(Z) = 0if and only if Z = 0.

B.2 Proof of Lemma 4

Let d;; denote the Bernoulli random variable I((7, j) € £0). We can derive

1 * *
(Ray —1)Z =7 (*5@' - 1) (eiej, Z)eic;

qij

= Z X”
4,3

We note that X;; for all i, j € [n] are zero-mean independent random matrices. Furthermore,

1151l <3 IZm\ < \fIIZHuxoo»
and
2
EX;; X[ E i — 1) Zieier
EExx | = |3 (G0 -1) 4
i,j ij
1 *
= Z<f—1> Z?jeiei
oy qij
2
< max <
o ZQij
J
2
S n||Z||12u oo max —
T
<z ! Coy /12"
= H Hw(oo) CQ max 0 n
1
< —ZI3

Similarly, it can be shown that [| 3=, ; EX7 X5 < Thus, applying the non-commutative

Bernstein inequality, we obtain

02 logn ”Z”w(oo)

(R, = )2l =

>,
i,

1
<C <\/C21 1Z Hw(oo) logn + ml\lew@o) -logn>

C
< 7O||Z||w(oo)

with high probability.
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B.3 Proof of Lemma 5

For any entry index pair (a, b), we have

1
[(PrReay — Pr)Zas
Wab

* * 1
-2 (ot =1) ZuPries), o) - o

1 " « 1

= Z <75m — 1) Zij<€i€j7PT(€aeb)> .

i qij Wab

: Z Tij-
>
We note that z;; for 4, j € [n] are independent random variables and Ex;; = 0. Furthermore,

1
|zij| < m —Zij| - l{eies, Pr(eaes))] - —
ij

| Z4;] - /2,“2] /2ﬂabr
Cof3~ \/ul]r/n /I»"ab'f

<% ﬂ'Zlﬂ

- Cy n Wwij
232

—||Z

CglOg’l’L” ||w(oo)’

and

s%

2
S ZE (—5” - 1) Z3; - |{eie;, Pr(eacs)) |

qij

> (— - 1) U5 ewed Pr(eac)))

qij Wap

1 1 *
< mmr- uZHi(oo) o Pr(ead)lE
28%
<2z,
23
< Z
= Cg 10gn| ||w(oo),
where we use the fact ||Pr(eqe;)||3 < 2£92”, and the last steps of the above two derivations are due to the
fact Co/pr/nlogn < 1implied by our assumption.

Thus, applying the non-commutative Bernstein inequality, we have

232
wa <cC <\/CQ log 7 1Z]|%., - logn + WHZHM(W) -log”>

(V2,2
—c Lo+ &) 12l

1
< 8120w
with high probability, provided that Cj is sufficiently large.

B.4 Proof of Lemma 6

We first express (Pr sgn(S))as as
(eaes, Prsgn(S)) = (sgn(S), Pr(eqcy))

= Z 5z‘j <6i6;, PT(ean»
= Z Tij
%,
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where

1 with prob.  p;;/2
di; =10 with prob. 1 — p;;
—1 with prob. p;;/2.

We note that x;; for ¢, j € [n] are independent random variables and Ex;; = 0. Furthermore, by applying
Cauchy-Schwartz inequality and the fact || Pr(eqe})||% < %, we have

* . 2ur 2apr
il < |{eiej, a <A — ) ——
jwis] < I(eies, Pr(eaei D] < /20 /21

z 2
i,J

and

= Z Eé?j <€i€;7 PT(ean)>2’

¥

- Zpij<eie;7PT(eaez)>2'

¥

IA

z<eie;,7>T<eaez:>>2\
i,J

= |Pr(eaes)|l7

< 2,uabr.

n

Thus, applying the non-commutative Bernstein inequality, we obtain

qujj <C (\/ 2ptab -logn + 4/ 2 \/ 2ptab ~logn>
— n n n
2,7
<c /uabrlogn’
n

where the last inequality follows from the fact Co+/pr/nlogn < 1 implied by the assumption.
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