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A Proof of Theorem 1

A.1 Key Properties

We provide a number of concentration properties under non-uniform sampling. These properties are in parallel
to those under uniform sampling used in [1, 3, 12]. More specifically, Lemma 1 is proven in [9], which readily
implies Lemma 3. We develop the proofs for other lemmas based on local incoherence, and provide the detailed
proofs in Appendix B.
Lemma 1. [9, Lemma 9] Suppose P((i, j) 2 ⌦

0

) = qij for all i, j 2 [n]. If qij � C
0

(µ
0ijr log n)/n for

some sufficiently large constant C
0

and for all i, j 2 [n], then with high probability

kPT � PTR⌦0PT k  1

2

. (17)

Lemma 2. If kPT � PTR⌦0PT k  1

2

and pij � p
0

for all i, j 2 [n], then

(a) kPTR⌦0k 
q

3

2p0
;

(b) P
⌦0PT is injective on T .

Lemma 3. Suppose P((i, j) 2 ⌦

0

) = qij for all i, j 2 [n]. For a fixed matrix Z 2 T , if qij �
C

0

(µijr log n)/n for some sufficiently large constant C
0

and for all i, j 2 [n], then with high probability

kZ � PTR⌦0(Z)kF  1

2

kZkF . (18)

Lemma 4. Suppose P((i, j) 2 ⌦

0

) = qij for all i, j 2 [n]. For a fixed matrix Z 2 T , if qij � C
0

p
µijr/n

for some sufficiently large constant C
0

and for all i, j 2 [n], then with high probability

k(R
⌦0 � I)Zk  C

C
0

kZkw(1)

(19)

for some constant C.

Lemma 5. Suppose P((i, j) 2 ⌦

0

) = qij for all i, j 2 [n]. Suppose � > 0 is a scaling factor. For a fixed
matrix Z 2 T , if qij � C

0

��2

p
µijr/n for some sufficiently large C

0

and for all i, j 2 [n], then with high
probability

k(PTR⌦0 � PT )Zkw(1)

 1

2

�kZkw(1)

. (20)

Lemma 6. Suppose S is the error matrix in the random sign model defined in Section 2.1. Then for any given
index (a, b) with a, b 2 [n], with high probability

��
[PT sgn(S)]ab

��  C

r
µabr log n

n
(21)

for some constant C.

A.2 Proof of Proposition 1 (Dual Certificate Conditions)

Due to the assumption of the proposition, � = ⌦

c satisfies the conditions required in Lemma 1. Hence, due
to Lemmas 1 and 2, we have kPTR�

k 
q

3

2p0
with p

0

= 1/n3 and P
�

PT is injective on T with high
probability.

Suppose ˆL = L+H and ˆS = S �H satisfy

kL+Hk⇤ + �kS �Hk
1

 kLk⇤ + �kSk
1

. (22)

By the definition of subgradient, we have

kL+Hk⇤ � kLk⇤ + hPTH,UV ⇤i+ kPT?Hk⇤

where we use the fact that there exists W 2 T? and kWk  1 such that kPT?Hk⇤ = hPT?H,W i.

Thus, we have

hPTH,UV ⇤i+ kPT?Hk⇤  �kSk
1

� �kS �Hk
1

.
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Furthermore,

kS �Hk
1

= kS � P
⌦

Hk
1

+ kP
�

Hk
1

� kSk
1

+ hsgn(S),�Hi+ kP
�

Hk
1

.

Combining the last two inequalities, we have

kPT?Hk⇤ + �kP
�

Hk
1

 hH,� sgn(S)� UV ⇤i.

For a matrix Y that obeys the conditions in the Proposition 1, we derive

hH, � sgn(S)� UV ⇤i
= hH,Y + � sgn(S)� UV ⇤i � hH,Y i
= hPTH,PT (Y + � sgn(S)� UV ⇤

)i+ hPT?H,PT?(Y + � sgn(S))i
� hP

�

H,P
�

Y i � hP
⌦

H,P
⌦

Y i

 �

n2

kPTHkF +

1

4

kPT?Hk⇤ +

�

4

kP
�

Hk
1

.

Combining the previous two inequalities, we obtain

3

4

kPT?Hk⇤ +

3

4

�kP
�

Hk
1

 �

n2

kPTHkF .

We next bound kPTHkF as follows:

kPTHkF  2kPTR�

PT (H)kF
 2kPTR�

PT?(H)kF + 2kPTR�

(H)kF


r

6

p
0

kPT?(H)kF +

r
6

p
0

kP
�

(H)kF .

We thus obtain
✓
3

4

� �

n2

r
6

p
0

◆
kPT?(H)kF +

✓
3

4

�� �

n2

r
6

p
0

◆
kP

�

(H)kF  0.

The above inequality implies that if p
0

� 1/n3, then PT?H = P
�

H = 0. This further implies P
�

PT (H) =

0. Since P
�

PT is injective on T , we have PTH = 0. Consequently, H = 0.

A.3 Dual Certificate Verification

We show that the dual certificate constructed in (13)-(15) satisfies the conditions in Proposition 1.

We first bound kZ
0

kF , kZ0

k1 and kZ
0

kw(1)

. Observe that for an index pair (a, b), we have

|[Z
0

]ab|  |[UV ⇤
]ab|+ �|[PT sgn(S)]ab|.

Using the fact that |[UV ⇤
]ab| 

q
µabr
n2 and � =

1

32

p
n logn

, and applying Lemma 6, we obtain

kZ
0

k1  C
p
µr/n. (23)

Furthermore,

kZ
0

kF  kUV ⇤kF + �kPT sgn(S)kF 
p
r + C

p
µr  C0pµr (24)

where we used kZkF  nkZk1 for any matrix Z, and

kZ
0

kw(1)

 kUV ⇤kw(1)

+ �kPT sgn(S)kw(1)

 1 + max

a,b
�
|[PT sgn(S)]ab|

wab

 C0, (25)

where we used the definition wab = max{
p

µabr/n2, ✏} and � =

1

32

p
n logn

. We note that for the sake of
convenience, the constants C and C0 may be different from line to line.

We further note that Lemma 3 implies

kZkkF  1

2

kZk�1

kF (26)
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with high probability, provided that qij � C
0

(µijr log n)/n for some sufficiently large constant C
0

and for all
i, j 2 [n].

Lemma 4 implies

k(I �R
�k )Zk�1

k  C

C
0

kZk�1

kw(1)

(27)

with high probability, provided that qij � C
0

p
µijr/n for some sufficiently large constant C

0

and for all
i, j 2 [n].

Lemma 5 implies

kZ
1

kw(1)

 1

2

p
log n

kZ
0

kw(1)

(28)

and

kZkkw(1)

 1

2

kZk�1

kw(1)

for k = 2, · · · , l (29)

with high probability, provided that qij � C
0

p
µijr/n for some sufficiently large constant C

0

and for all
i, j 2 [n].

We are now ready to show that the constructed dual certificate Y obeys the conditions (9)-(12) in Proposition
1. Clearly, Y satisfies P

⌦

Y = 0 given in (9) due to the construction.

In order to show that Y satisfies (12), we derive
kPTY + PT (� sgn(S)� UV ⇤

)kF

=

�����Z0

�
 

lX

k=1

PTR�kZk�1

!�����
F

=

�����(PT � PTR�1)Z0

�
 

lX

k=2

PTR�kZk�1

!�����
F

=

�����PTZ1

�
 

lX

k=1

PTR�kZk�1

!�����
F

= · · ·

= kZlkF
(a)


✓
1

2

◆l

· kZ
0

kF
(b)

 C0
✓
1

2

◆l p
µr  �

n2

,

where (a) follows from (26) and (b) follows from (24).

In order to show that Y satisfies (11), we respectively show that kPT?Y k  1

8

and kPT?(� sgn(S))k  1

8

as
follows.

kPT?Y k =

�����PT?

lX

k=1

R
�kZk�1

�����


lX

k=1

kPT?R
�kZk�1

k

(a)
=

lX

k=1

kPT?(R
�kZk�1

� Zk�1

)k


lX

k=1

kR
�kZk�1

� Zk�1

k

(b)


lX

k=1

C

C
0

kZk�1

kw(1)

(c)

 C

C
0

 
1 +

lX

k=2

1p
log n

✓
1

2

◆k�1

!
kZ

0

kw(1)

 2C

C
0

kZ
0

kw(1)

(d)

 1

8

,
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where (a) follows because Zk�1

2 T , (b) follows from (27), (c) follows from (28) and (29), and (d) follows
from (25) and C

0

is sufficiently large.

Furthermore, by applying the spectral norm bound on random matrix in [19], we have

kPT?(� sgn(S))k  �k sgn(S)k  � · 4
p
n. (30)

Since � =

1

32

p
n logn

, we have

kPT?(� sgn(S))k  1

8

p
log n

 1

8

.

In order to show that Y satisfies (10), we derive

kY k1 =

�����

lX

k=1

R
�kZk�1

�����
1

(a)



�����
X

i,j

6

pij
I{(i,j)2�1}(Z0

)ijeie
⇤
j

�����
1

+

lX

k=2

�����
X

i,j

1

qij
I{(i,j)2�k}(Zk�1

)ijeie
⇤
j

�����
1

 6 ·max

i,j

|(Z
0

)ij |
pij

+

lX

k=2

max

i,j

|(Zk�1

)ij |
qij

 6

C
0

p
n log n

kZ
0

kw(1)

+

lX

k=2

1

C
0

p
n
kZk�1

kw(1)

(b)

 6

C
0

p
n log n

kZ
0

kw(1)

+

lX

k=2

1

C
0

p
n log n

✓
1

2

◆k�1

kZ
0

kw(1)

 7

C
0

p
n log n

kZ
0

kw(1)

(c)

 224C

C
0

�

(d)

 �

4

,

where (a) is due to the golfing scheme with non-uniform partitions, (b) follows from (28) and (29), (c) follows
from (25) and (d) follows because C

0

is sufficiently large.

B Proofs of Key Properties

In this section, we prove the key lemmas provided in Appendix A.1. The central technique used here is non-
communicative Bernstein inequality [20].

B.1 Proof of Lemma 2

We note that the condition kPT � PTR⌦0PT k  1

2

implies for any matrix Z

1

2

kPTZkF  kPTR⌦0PT (Z)kF  3

2

kPTZkF .

Thus, for any matrix Z, we have
���R1/2

⌦0
PT (Z)

���
2

F
= hR1/2

⌦0
PT (Z),R1/2

⌦0
PT (Z)i

= hZ, (R1/2
⌦0

PT )
⇤R1/2

⌦0
PT (Z)i

= hPT (Z),PTR⌦0PT (Z)i
 kPTZkF kPTR⌦0PT (Z)kF

 3

2

kPTZk2F .

Thus,
���R1/2

⌦0
PT

��� 
p

3/2 and hence
���PTR1/2

⌦0

��� 
p

3/2 because R1/2
⌦0

PT and PTR1/2
⌦0

are adjoint op-

erators and have equal norm. On the other hand, we show
���R1/2

⌦0

���  1/
p
p
0

as follows. For any matrix
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Z,

���R1/2
⌦0

(Z)

���
2

F
=

�����
X

i,j

1

p
pij

I{(i,j)2⌦0}Zijeie
⇤
j

�����

2

F


X

i,j

Z2

ij

pij
 1

p
0

kZk2F .

Thus, kR
⌦0PT k  kR1/2

⌦0
k · kR1/2

⌦0
PT k 

q
3

2p0
. Thus, kPTR⌦0k 

q
3

2p0
.

Since we have 1

2

kPTZkF  kPTR⌦0PT (Z)kF  3

2

kPTZkF for any matrix Z 2 T , the operator
PTR⌦0PT mapping T onto itself is well conditioned. Thus, P

⌦0PT is injective on T , i.e., for Z 2 T ,
P

⌦0PT (Z) = 0 if and only if Z = 0.

B.2 Proof of Lemma 4

Let �ij denote the Bernoulli random variable I((i, j) 2 ⌦

0

). We can derive

(R
⌦0 � I)Z =

X

i,j

✓
1

qij
�ij � 1

◆
heie⇤j , Zieie⇤j

=:

X

i,j

Xij .

We note that Xij for all i, j 2 [n] are zero-mean independent random matrices. Furthermore,

kXijk  1

qij
|Zij | 

1

C
0

p
n
kZkw(1)

.

and
�����
X

i,j

EXijX
⇤
ij

����� =

�����
X

i,j

E

✓
1

qij
�ij � 1

◆
2

Z2

ijeie
⇤
i

�����

=

�����
X

i,j

✓
1

qij
� 1

◆
Z2

ijeie
⇤
i

�����

 max

i

X

j

Z2

ij

qij

 nkZk2w(1)

·max

i,j

w2

ij

qij

 kZk2w(1)

· 1

C2

0

max

i,j

✓
C

0

r
µijr

n

◆

 1

C2

0

log n
kZk2w(1)

Similarly, it can be shown that k
P

i,j EX
⇤
ijXijk  1

C2
0 logn

kZk2w(1)

. Thus, applying the non-commutative
Bernstein inequality, we obtain

k(R
⌦0 � I)Zk =

�����
X

i,j

Xij

�����

 C

 s
1

C2

0

log n
kZk2w(1)

· log n+

1

C
0

p
n
kZkw(1)

· log n
!

 C

C
0

kZkw(1)

with high probability.
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B.3 Proof of Lemma 5

For any entry index pair (a, b), we have

[(PTR⌦0 � PT )Z]ab ·
1

wab

=

X

i,j

✓
1

qij
�ij � 1

◆
ZijhPT (eie

⇤
j ), eae

⇤
bi ·

1

wab

=

X

i,j

✓
1

qij
�ij � 1

◆
Zijheie⇤j ,PT (eae

⇤
b)i ·

1

wab

=:

X

i,j

xij .

We note that xij for i, j 2 [n] are independent random variables and Exij = 0. Furthermore,

|xij | 
1

qij
|Zij | · |heie⇤j ,PT (eae

⇤
b)i| ·

1

wab

 |Zij | ·
1

C
0

��2

p
µijr/n

·
r

2µijr

n
·
r

2µabr

n
· 1q

µabr
n2

 2�2

C
0

r
µr

n

|Zij |
wij

 2�2

C2

0

log n
kZkw(1)

,

and �����
X

i,j

Ex2

ij

����� 
X

i,j

E

✓
1

qij
�ij � 1

◆
2

Z2

ij · |heie⇤j ,PT (eae
⇤
b)i|2 ·

1

w2

ab


X

i,j

✓
1

qij
� 1

◆
Z2

ij

w2

ij

·
w2

ij

w2

ab

· |heie⇤j ,PT (eae
⇤
b)i|2

 1

C
0

��2

p
nµr · kZk2w(1)

· 1

µabr
kPT (eae

⇤
b)k2F

 2�2

C
0

r
µr

n
· kZk2w(1)

 2�2

C2

0

log n
kZk2w(1)

,

where we use the fact kPT (eae
⇤
b)k2F  2µabr

n , and the last steps of the above two derivations are due to the
fact C

0

p
µr/n log n  1 implied by our assumption.

Thus, applying the non-commutative Bernstein inequality, we have
�����
X

i,j

xij

�����  C

 s
2�2

C2

0

log n
kZk2w(1)

· log n+

2�2

C2

0

log n
kZkw(1)

· log n
!

= C

✓p
2

C
0

� +

2

C2

0

�2

◆
kZkw(1)

 1

2

�kZkw(1)
,

with high probability, provided that C
0

is sufficiently large.

B.4 Proof of Lemma 6

We first express (PT sgn(S))ab as
heae⇤b ,PT sgn(S)i = hsgn(S),PT (eae

⇤
b)i

=

X

i,j

�ijheie⇤j ,PT (eae
⇤
b)i

=:

X

i,j

xij
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where

�ij =

8
><

>:

1 with prob. ⇢ij/2

0 with prob. 1� ⇢ij
�1 with prob. ⇢ij/2.

We note that xij for i, j 2 [n] are independent random variables and Exij = 0. Furthermore, by applying
Cauchy-Schwartz inequality and the fact kPT (eae

⇤
b)k2F  2µabr

n , we have

|xij |  |heie⇤j ,PT (eae
⇤
b)i| 

r
2µr

n
·
r

2µabr

n

and
�����
X

i,j

Ex2

ij

����� =

�����
X

i,j

E�2ijheie⇤j ,PT (eae
⇤
b)i2

�����

=

�����
X

i,j

⇢ijheie⇤j ,PT (eae
⇤
b)i2

�����



�����
X

i,j

heie⇤j ,PT (eae
⇤
b)i2

�����

= kPT (eae
⇤
b)k2F

 2µabr

n
.

Thus, applying the non-commutative Bernstein inequality, we obtain
�����
X

i,j

xij

�����  C

 r
2µabr

n
· log n+

r
2µr

n
·
r

2µabr

n
· log n

!

 C

r
µabr log n

n
,

where the last inequality follows from the fact C
0

p
µr/n log n  1 implied by the assumption.
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